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Numerical solutions for the flow field about cones with nose angles of up to 30' 
at angles of attack up to 50" for a range of Reynolds numbers and wall tempera- 
ture ratios are presented. The solutions obtained permit interaction between 
the inviscid region and the boundary layer on the body through the displacement- 
thickness effect. The solutions are valid throughout the flow field except in the 
region adjacent to the leeward line of symmetry. Comparisons are made with 
experimental results and other numerical solutions. Detailed flow structure and 
the variation of surface conditions with cone angle, incidence, Reynolds number 
and wall temperature are indicated. The numerical methods used for the inviscid 
flow equations are Telenin's method and the method of characteristics, while a 
modified form of the method of integral relations is applied to the boundary- 
layer equations. 

1. Introduction 
Supersonic flow about cones at an angle of attack has been the subject of 

many investigations, both experimental and theoretical. At present experimental 
data are available for angles of attack up to 30°, cone angles up to 20°, Mach 
numbers up to 14, and for both laminar and turbulent flow. One of the earliest 
investigations, for completely laminar flow, was carried out by Tracy (1963). 
Rainbird (1968) conducted experiments in which the boundary-layer flow was 
mainIy turbulent. More recently, Yahalom (1971) made a comprehensive study 
of the flow about cones of larger angle (up to 20"). 

Previous theoretical investigations have either dealt with purely inviscid 
flow or have assumed the inviscid solution (theoretical or experimental) at the 
body to  solve the boundary-layer equations. The inviscid flow investigations 
can be divided into two groups. First, if the cross-flow is everywhere subsonic 
oc just supersonic the governing equations are essentially elliptic in character. 
Solutions for this case have been obtained by Babenko et al. (1965) and by Holt 
& Ndefo (1970), among others. If the cross-flow has an extensive region of 
supersonic cross-flow then an internal shock is required in order that the flow 
can satisfy the boundary condition on the leeward line of symmetry (Fletcher 
1976). In this category partial solutions have been obtained by Bazzhin (1970) 
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and complete solutions by Fletcher (1974a, b) .  The shock-capturing method 
of Kutler & Lomax (1970) is suitable for finding solutions in either of these 
categories. 

Theoretical solutions of the boundary -layer equations on the body have either 
used calculated inviscid solutions for conditions just outside the boundary layer 
or experimentally determined conditions a t  the body surface. The solutions of 
Bashkin (1968), Dwyer (1971) and Marcillat & Roux (1972) all used numerical 
inviscid solutions for the appropriate boundary conditions and, consequently, 
were restricted to conditions for which the cross-flow remains subsonic. Boericke 
(1971) and Lin & Rubin (1973) mainly used smoothed experimental surface data. 
Lin & Rubin were able to obtain solutions up to an angle of incidence of 20". 

Solutions for the complete flow field using a modified form of the Navier- 
Stokes equations (ignoring streamwise diffusion) have been obtained by Lubard 
& Helliwell (1974). However, it  appears that these solutions are restricted to 
small or moderate incidence. 

The present study deals with the supersonic flow about cones at angles of 
attack which are sufficiently large to guarantee a substantial region of supersonic 
cross-flow. The solution in the inviscid region is obtained concurrently with 
the solution in the boundary layer on the body. Interaction between the two 
regions is permitted through the displacement-thickness effect. This effect is 
significant and for typical conditions where other investigators have obtained 
solutions the consequence of not including the displacement-thickness effect is 
evident. The present method is quite general, so that solutions are not restricted 
to those particular conditions for which experimental data already exist. The 
main difference in scope between this and previous investigations is that here 
solutions have been obtained for angles of attack up to 50" and for cone half- 
angles up to 30". The present solutions are valid up to the circumferential station 
on the leeward side of the cone where interaction begins between the boundary 
layer and the internal shock. The numerical scheme employed needs to be modi- 
fied to carry the solutions beyond this station since the cross-flow velocity 
profiles there are reversed near the cone surface, and indeterminacies are intro- 
duced at points where the cross-flow vanishes. Work is now in progress on a 
revised scheme which overcomes these difficulties and a later paper will deal 
with the full flow field near the leeward plane of symmetry. 

The numerical methods used to solve the inviscid flow equations are Telenin's 
method (Gilinskii, Telenin & Tinyakov 1964) and the method of characteristics 
(Fletcher 1974b). The numerical method used to solve the boundary-layer 
equations is an adaptation of the method of integral relations in which the intro- 
duction of orthonormal weighting functions permits considerably more accurate 
solutions to be obtained than were previously possible (Fletcher & Holt 1975). 

In  $ 2  the equations of motion .used in the inviscid and viscous regions are 
presented, along with various transformations applied to them. Section 3 des- 
cribes the boundary and initial conditions appropriate to  the different flow 
regimes. In  $ 4  the different numerical methods used to solve the equations of 
motion in the various flow regions are briefly described. Section 5 gives details 
of the interaction mechanism used to connect the boundary-layer and inviscid 
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regions. Comparisons with Tracy’s (1963) experimental data are used to show 
the effect of the displacement thickness on the heat transfer and pressure 
distribution. Section 6 gives the main body of numerical results and includes 
comparison with experimental results, detailed boundary-layer velocity and 
temperature distributions, and the effect of varying incidence, cone half-angle, 
Reynolds number and surface temperature on the surface flow parameters; the 
pressure, skin friction and heat transfer. Since the solutions in the inviscid region 
for comparable incidences and cone angles are already available (Fletcher 1974a), 
these are not repeated. 

2. Equations of motion 
2.1. Inviscid equations 

In the region away from the body surface the flow behaviour is closely approxi- 
mated by assuming an inviscid non-conducting fluid. If, in addition, the free 
stream is supersonic and a shock wave is attached to  the apex of the cone, the 
flow variables are independent of the distance x from the cone apex. In  terms of 
spherical co-ordinates (x, 8, #), with corresponding velocity components (u, v, w), 
the equations of motion are as follows. 

Conservation of mass: 

1 V W 

sin8 p ps1n8 
ve+-W6+-po+-p6+2u+vcot8 = 0. 

Conservation of x momentum: 

W 
vue+-Uu,,-(v~fW2) = 0. 

sin 8 

Conservation of 8 momentum: 

Conservation of q5 momentum: 

Conservation of energy : 

The variables in (2.1)-(2.5) have been made dimensionless using a*, the 
critical sound speed, and pa, the free-stream density. The character of the equa- 
tions is determined by the magnitude of the cross-flow Mach number 

Hcr = {(VZ + W2)/U2)+. 

When HCr c 1 the equations are elliptic in character and require appropriate 
boundary conditions. This is the situation in the region adjacent to the wind- 
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the inviscid regions: E = (Os-O)/(Os-Od), 7 = #In. 
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ward line of symmetry (see figure l b )  and extending circumferentially for 
approximately 80" on either side of this line. The exact extent of this region 
depends on the particular choice of the external parameters: the free-stream 
Mach number Mw, the incidence angle a and the cone half-angle 0,. When 
M,, > 1 the equations are hyperbolic in character. The external parameters Mw, 
a and 0, have been chosen such that the hyperbolic region extends from the 
sonic line to some undetermined circumferential location adjacent to the leeward 
line of symmetry. The hyperbolic region will be terminated by an internal shock. 

In order to simplify the procedure for solving (2.1)-(2.5), the region bounded 
by the windward line of symmetry, the displacement-thickness profile, the lee- 
ward line of symmetry and the outer shock is transformed into a rectangle by 
introducing new independent variables 5 and 7 : 

Here 08($$) is the outer shock profile and O,(+) is the displacement-thickness 
profile. The resulting equations and further details may be found in Fletcher 
(1974a). 

2.2. Viscous equations 

Close to the body it is assumed that viscous effects can be completely accounted 
for using the three-dimensional compressible boundary-layer equations. For a 
general inclined axisymmetric body these equations are the following. 

Conservation of mass : 

Conservation of x momentum: 

Conservation of q5 momentum : 

Conservation of energy: 

(2.10) 

(2.11) 

h e r e  HT, the total enthalpy, is given by 

HT = C, T + $(uZ + w'). 

A subscript e indicates external conditions, i.e. the inviscid solution at the 
displacement-thickness contour. 

In (2.7)-(2.11) dimensionless variables have been introduced by using suitable 
oombinations of a*, pa  and L, a suitable reference length. 
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Equations (2.7)-(2.11) can be simplified by making the following transforma- 

(a) The Howarth transformation (to remove explicit dependence on the 
tions in turn. 

density) : 

(2.12) 

(b )  The Mangler transformation (to reduce the effect of r ) :  

x,  = /:reds, YZ = rY1Y $2 = $1. (2.13) 

(c) The Blasius transformation (to reduce the number of independent vari- 
ables from three to two): 

(2.14) 

The above approach essentially follows Dwyer (197 1). Application of the 

Conservation of mass: 
above transformations to (2.7)-( 2.11) produces the following. 

Conservation of x momentum: 

(2.15) 

(2.16) 

Conservation of q5 momentum: 

Conservation of energy 

(2.18) 

Here u, = ulu,, w, = wIue, 

and 
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To simplify the introduction of the method of integral relations the Crocco 
transformation is applied. This replaces the independent variables [ and 7 by 
5 and u, (the subscript 2 will be dropped henceforth), i.e. 

(2.19) 

where r = au/ar and is proportional to the shear stress in the radial direction. 
The equations in Crocco form are similar to (2.15)-(2.18) and, consequently, are 
not shown explicitly. 

The method of integral relations seeks weighted combinations of (2.15)-(2.18) 
such that explicit dependence on v, disappears. This is clearly desirable since v, 
has no immediate physical significance. If (2.15) is multiplied by gk(u) and added 
to gi (u)  x (2.16), application of the Crocco transformation to the combination 
and integration with respect to u from 0 to 1 produce the result 

Similarly, by taking wgk x (2.15) +wg; x (2.16) + g k  x (2.17), applying the Crocco 
transformation and integrating, the following expression results : 

a / l g x $ d u  = sin8, 

1 aw 
ac 0 

-Z,/01g~rwdu-2Z,~o g ; r G d u  

-1; 9; f ( u :- W] d u  + la $/ol g, du 

-I2 g k - 7  (2.21) { :: -k g k  $ du] 

Also, by taking sg, x (2.15) + $9; x (2.16) x gk + (2.18), applying the Crocco trans- 
formation and integrating, the following expression is obtained: 

-lo1 g i y  (u:- w ]  d u  - I ,  ( g , g ~ ] ~ ~ ~ ~  - Z4j01 gir (u+$ w] d u ]  . (2.22) 

In (2.20)-(2.22) the total enthalpy HT has been replaced by s, defined as 

8 = 1 - HT/B, (2.23) 

where B, the Bernoulli constant, is given by B = Q(y + l)/(y - 1). The expression 
for B follows from the reduction to dimensionless form. s has the desirable 
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property of vanishing at the outer edge of the boundary layer. At the wall 
s = s, = 1 - T,/To, where To is the stagnation temperature. In  (2.20)-(2.22) the 
weighting functions gk(u) have the following form: 

(2.24) 

The coefficients b,, are evaluated using the Gram-Schmidt orthonormalization 
process. A further discussion of the orthonormal method of integral relations 
may be found in Fletcher & Holt (1975). 

In  (2.20)-(2.22) the coefficients l,, I , ,  13, etc., depend primarily on the inviscid 
conditions. Those not already defined are given by 

Y - 1  Peg' I ,  = - 
y 2pesin0,' 

As this point it may be noted that (2.20)-(2.22) contain 60 approximations other 
than those inherent in the boundary-layer equations (2.7)-(2.10). 

3. Boundary conditions and initial conditions 
3.1. Inviscid flow region 

The boundary conditions on the windward line of symmetry are that w and 
au/a$, awl&$, ap/a$ and ap/a$ are zero. At the outer shock (unknown in advance) 
the conditions inside the shock are given in terms of the free-stream conditions 
by the Rankine-Hugoniot relations (see Fletcher 1974a). At the inner surface 
(c  = I)  zero flow normal to the displacement-thickness contour is required. The 
precise location of the displacement-thickness contour is determined as part of 
the interaction process (see $5). In  addition, the hyperbolic region requires 
initial conditions on some non-characteristic line. This line turns out to be the 
extreme downstream edge (in the cross-flow direction) of the elliptic region 
(see $4). 

3.2. Viscous flow region 
At the body surface u = v = w = 0 and T = T,. At the outer edge of the boundary 
layer the inviscid solution gives pe, ue, we, pea and w@. The initial conditions on 
the windward line of symmetry, required before (2.20)-(2.22) can be solved, are 
obtained by noting that (2.20)-(2.22) reduce a t  9 = 0 to the following algebraic 
equations : 



Supersonic viscous $ow over cones 569 

and 

where 

Equation (3.2) is obtained from (2.21) by differentiating with respect to 6. 

sentations for the functions w&, w$- and sw& are introduced: 
In order to simplify the solution of (3.1)-(3.3) the following algebraic repre- 

(3.4a) 

(3.4b) 

(3 .44  

Once the coefficients cjl have been determined, wc,r and s follow since the gj(u) 
me known ap ior i .  Certain of the coefficients may be obtained by satisfying the 
boundary conditions. At the outer edge of the boundary layer s = 0 and gr( 1 )  = 0 
for allj. Hence 

~ 0 3  = 0. ( 3 . 5 ~ )  

co2 = (WeglUe)Co1. (3.5b) 

Also = 22/21 = ~ 0 2 / ~ 0 1 ,  thus 

At the body surface u = 0, we = 0 and s = s, (given, apriori). Thus 

N-1 
coi+ x c j l g j ( o )  = 0, i = 1,2,3,  (3.6 a-c) 

j=1 

N-1 N-1 

j= 1 j=1 
and z Cj39(i(O) = 8, .x Cj,g;(o). (3.8) 

Seven of the coefficients cgi may be determined from the boundary conditions 
above. Theother 3N - 7 coefficients are determined from (3.1)-(3.3). Substitution 
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of the expressions (3.4) into (3.1)-(3.3) permits the following simple representa- 

tion for (3.1143.3): col~l i ; ,+ckl  = X k l ,  k = 1, . . . , N - 2 ,  (3.9a) 
co2f lpk+ck2 = Sk2,  k = 1, . . . , N - 3 ,  (3.9b) 

ck3 = s k 3 ,  k = 1 ,..., N - 2 ,  (3.9c) 

where (3.9a) 

and Ski is the right-hand side of (3.1)-(3.3) evaluated numerically. The integrals 
in (3.1)-(3.3) and ( 3 . 9 4  have been evaluated using a local Simpson's rule and 
m evaluations of the integrand across the boundary layer (typically m = 32). 
The simple form of the left-hand sides of ( 3 . 9 ~ )  follows from the particular 
choice of the orthonormal weighting functions gk(%) (see Fletcher & Holt 1976). 
Equations (3.5)-(3.9) constitute 3 N  equations for the 3 N  unknown coefficients 
C j i .  

The problem must be solved iteratively because the terms Xk,  cannot be 
evaluated until wc, r and s and hence zl, z2 and z3 have been evaluated. To 
simplify the process (3.9-c) are written as 

Ek = C01 SFk -k Ckl - 8 k 1  = 0, (3.10a) 

Fk = Co2sFk + ck2 - s k 2  = 0, (3. lob) 
G k  = ck3 - s k 3  = 0. (3.10 c) 

An arbitrary choice of the coefficients cji  will make Ek, Fk and G, non-zero. 
The iterative technique is based on a function minimization method due to 
Powell (1964). Powell's method seeks to modify the current values of cji  until 

N - 2  N-3  N - 2  
H =  z E i +  F i +  2 G i = O .  (3.11) 

The major difficulty with this approach lies in choosing the initial estimates 
of the cji  with sufficient accuracy to ensure convergence of the process. Thia 
problem is made tractable in the following manner. If a solution has been found 
for a particular value of N this solution may be used as the f i s t  approximation 
to the solution of order N + 1. The three extra coefficients cNi are initially set 
equal to zero, consequently the only contributions, initially, to H are fiom 
E N - 1 ,  FN-2 and GN-l. This technique has worked quite satisfactorily and essen- 
tially reduces the problem of choosing suitable starting values for the cji's to 
that for the lowest-order solution sought. If (3.2) is temporarily ignored a solu- 
tion with N = 3 may be obtained. In  this case (3.1) and (3.3) give one relation- 
ship each when k = 1. For this case suitable starting values for w&, w$r and 
sw& at u = 0.5 are guessed. Then (3.4) give corresponding values of the cjt)s. 
Once a solution satisfying (3.11) has been found the order N is increased by one 
and the process repeated. This is continued until a solution is obtained at N = 7. 
All the solutions presented in this paper are for N = 7 and m = 32. This choice 
is considered a reasonable compromise between accuracy and computer execution 
time on the basis of the results for a cone at  zero angle of attack (Fletcher & Holt 
1975). 

The solution giving the values of the cji  for N = 7 can be used to obtain zl, 
z2 and z3 [using (3.4)] and hence wc, r and s on the windward line of symmetry, 

f = l  j= 1 j=l 
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6 = 0. However, as will be indicated in $4, the solutions for the cii can be used 
directly as initial data for coefficients in a series representation [equivalent to 
(3.4)] for w, 7 and s appropriate to the solution for the region 6 > 0. 

4. Solution of the equations of motion 
4.1. Inviscid region 

For the purposes of obtaining numerical solutions the inviscid region is split up 
into two regions (see figure l b ) ,  ABFE and CDEF. In  the windward region 
ABFE, Telenin's method (Gilinskii et al. 1964) is used. In  this the equations of 
motion (2.1)-(2.5) are treated as ordinary differential equations in 5 [see (2.6)] 
and are integrated along BA, FE and three equally spaced rays between B A  
and FE, from the outer shock to the body. Since the outer shock is not known 
a priori the method is iterative. Powell's (1964) method is used to modify the 
outer-shock location BF until the normal velocities on AE, the displacement- 
thickness contour, are zero. Further details may be obtained from Fletcher 
(19744. 

The solution on the last ray, FE, which is deliberately chosen to lie beyond 
the windward sonic line, is used to give initial data for a characteristics solution. 
The line FE is normally positioned at  q5 = 90". However, for some of the large 
incidence data (e.g. cc. = 50°, Oa = 10') the sonic line is closer to the windward 
symmetry line and FE is located at $ = 72". For the case a = 12', 8, = lo", 
FE is located at q5 = 110". 

In the shoulder region CDEF, the upstream interpolation method of character- 
istics, due to Belotserkovskii & Chushkin (1965), has been followed. This method 
retains a fixed grid rather than permitting the grid to be defmed by the character- 
istics development. Values of the flow variables at  the downstream mesh points 
are obtained by projecting the characteristic lines through the mesh point in the 
upstream direction until they intersect the previous line (constant 7) of known 
data. At the intersections the local function values can be obtained by inter- 
polating among adjacent points in the direction. The compatibility conditions 
connect the upstream interpolated values with the unknown values at the down- 
stream mesh point. Further details may be found in Fletcher ( 1 9 7 4 ~ ) .  

4.2. Viscous region 

In the region AEDD'A, adjacent to the body (figure 1 b) ,  the equations of motion 
(2.20)-(2.22) are solved using the orthonormal method of integral relations. 
The following representation for W I T ,  w2/r and S W ~ T  is introduced: 

(4 . la)  

(4.lb) 

( 4 . 1 ~ )  
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Seven of the unknown coefficients bji may be determined from the following 
boundary conditions : 

(4 8 = 0 at u = 1, which leads to b, = 0; ( 4 . 2 ~ )  
( b )  we/ue = y2/y1 at u = 1, which leads to b,, = (we/ue) bol; (4.2b) 

(4 y1,ya,ys,w=O at u = O ,  
N -  1 

j=1 
which leads to boi+ C b j i g j ( O )  = 0, i = 1,2,3,  

(d )  s = s, at  u = 0, which leads to 

where 

(4.2 c e )  

(4.2f) 

Introduction of (4.1) into (2.20)-(2.22) produces the following result: 

sp --I-%' ab,, = T k l ,  k = 1 ,..., N - 2 ,  ( 4 . 4 ~ )  ac ac 
(4.4b) 

ab,la[ = T ~ ~ ,  k = 1, . . . , N - 2, (4 .44  

where s& is given by ( 3 . 9 4  and the Tki are the numerical values of the right- 
hand sides of (2.20)-(2.22). Equations (4.4) can be integrated if abk,/aC can be 
expressed explicitly. In  general 

b z t l  = bE4 + hab;i/ac, (4.5) 

where h is the step size in the c direction. Clearly b& and bFZ1 both satisfy the 
boundary conditions (4.2). Consequently the following boundary conditions for 

abki/ac may be obtained: ab03/a[ = 0, ( 4 . 6 ~ )  

(4.6b) 

abol+~%l abji ( 4 . 6 ~ )  - ---9j(O) = 0, ac j= l  ac 
(4.6.f) 

N - l a b j 2  , c - - -Sj(O) = 0 
j=l  

(4.69) 
N-1 ab j 3  
2 - 9 p )  = s w  2 --bjlS;(O). 
j-1 j-1 aC 

N-i a 
and 

Combination of (4.4u, c) and (4.6c, e ,  g) produces the following explicit ex- 
pression for ab,,/ag: 

(4.71 ab,, - x-2 - - (Tkl -%)  f l w k / [ l  + ~ - e s F k 8 w k ] ,  
ac k-1 SW k-1 

where ( 4 . 7 ~ ~ )  
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abo2/ac then follows from (4.6b), and substitution for abol/a[ and abo2/a[ permits 
explicit evaluation of abkl/ac and abk2/ac using (4.4a, b) .  

The expression for a b k { / a C  cannot be integrated from [ = 0 since w = 0 there 
and this causes difficulty in trying to invert (4.1) to find w, r and 8.  At a small 
distance E beyond 5 = 0 the solution for y3 may be obtained from $3.2 by noting 
that 

b k 1  = d&l, b k 2  = E2Ck2, b k ,  = ECk3. (4.8) 

The value of E used in the present study was 0.005 n rad. 
Equations (4.4) and related equations have been integrated in the windward 

region using a generalized predictor-corrector technique due to Gear (1971) in 
which the step size and order of the predictor-corrector are chosen to suit a 
specified relative error. In  the present study a relative error of was used. 
Preliminary tests indicated that reducing the relative error below loF4 produced 
no change in the solution. The step size varied between 0.001 and 0-1 rad. 

In  the shoulder region a second-order predictor scheme has been used with a 
typical step size of 0.0004 n. The second-order predictor was chosen to be con- 
sistent with the accuracy of the solution in the inviscid shoulder region. The 
relatively small step size was necessary for stability. 

4.3. Comments on extension of the method to the far windward region 
The procedure described in 9 4.2 runs into difficulties when the cross-flow profile 
reverses, as on the far windward side of the cone (beyond the cross-flow separa- 
tion point). In  this region, at each station 6 = constant, w = 0 at a point within 
the boundary layer and (4.1 a-c) give indeterminate values of r and s. Thus, at 
such points, it is not possible to evaluate the integrals on the right sides of 
(2.20)-(2.22). To overcome this problem it is necessary to represent all the com- 
binations of w,  r, s and aw/au by series of type (4.1). The coefficients in these are 
connected by algebraic relations in terms of values of w, r and s at various 
stations u = constant. Full details will be presented in a later paper. 

5. Viscous/inviscid interaction 
As long as the flow remains attached it is customary to assume that the re- 

tardation of the flow in the boundary layer adjacent to the body surface has a 
negligible effect on the outer inviscid flow. However, previous studies indicate 
that boundary-layer solutions based on experimental pressure distributions are 
generally more accurate than those based on inviscid solutions (Boericke 1971). 

Sinoe the present study has been concerned with external conditions 

( X a ,  a, e,, Re,, Tw/To) 

for which no experimental data exist, it  has been necessary to rely on an inviscid 
solution (Fletcher 19743). Also, the large angles of attack considered here have 
resulted in relatively thick boundary layers on the leeward side of the cone. 
Therefore the inviscid solutions (Fletcher 19743) have been modified to include 
the displacement-thickness effect of the boundary layer on the outer flow. The 
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resulting modified solutions for u,, we, pe and pe a t  the displacement-thickness 
contour have then been used to  recompute the boundary-layer solution. 

A basic assumption underlying the solution in the inviscid region is that the 
flow is conical, i.e. that any boundary of the flow, such as the displacement- 
thickness contour, will grow linearly with x. A basic assumption underlying the 
solution of the boundary-layer equations is that any flow parameter, such as 
the displacement-thickness contour, varies like d (after Moore 1951). The value 
of these two assumptions is that they both permit a problem with three inde- 
pendent variables to be reduced to  a problem in two independent variables. 

Once the displacement thickness is permitted to modify the outer inviscid 
flow an inconsistency arises in that the displacement thickness appears to grow 
like x or x*, depending on the frame of reference. This inconsistency is overcome 
here by introducing the concept of a ‘locally conical’ outer flow. That is, at  any 
particular x (and Re,), the flow field is assumed to behave as though it were 
bounded on the inside by a semi-infinite conical body whose local radius coincides 
with the local displacement-thickness contour and whose apex coincides with 
the apex of the original body. This represents an approximation in which terms 
in the governing equation involving radial derivatives (associated with the non- 
conical inner boundary to the inviscid region) are taken to be negligibly small 
compared with other terms. 

An implicit expression for the displacement thickness 8d has been given by 
Moore (1952) as 

1 . 5 ~ ~ ~ ~  sin 6’,( 8, - 8,) + a[pewe( 8, - 8,,+)1/@ = 0, (5.1) 

where 

and 

For the rest of the paper, S1=6,/x will be referred to as the displacement 
thickness. The details of the interaction depend on whether the outer flow is 
governed by elliptic or hyperbolic equations. 

5.1. Windward region 

The numerical solution of the inviscid flow in the windward region (see figure 1 b )  
is obtained using Telenin’s method, which is suitable for elliptic or mixed con- 
ditions. Solutions are sought along five rays normal to the cone surface. 
Intermediate Values of we, we, etc. required by the boundary-layer solution 
are obtained by interpolation. 

Initially the displacement thickness &llinv and displacement-thicknes slope 
[a8,/a[linV are assumed to be zero. An inviscid solution and a boundary-layer 
solution up to B’E (in figure 1 b )  are then obtained. A new inviscid displacement 
thickneas is chosen as follows : 

( 5 4  n+1 - 8%. 
4inv - llnv +ke(S?viBc- s?inv)* 
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FIUTJRE 2. Growth of displacement-thickness slppe. M ,  = 7, 8, = 2O0, u = 30", 
, [as,/aan,,,; ----- 9 t-a~ll~l,. Re, = 5 x lo6, TWITo = 0.40. - 

A new displacement-thickness slope is chosen similarly. k, is a factor, chosen 
empirically to equal 0.8. At each step of the iteration a fresh inviscid solution 
and a fresh boundary-layer solution are calculated. The procedure is continued 
until S,.,+,l, and (aS~+l/ag)vi,, are in acceptable agreement with and i3S?&$/a[. 
Typically this takes three iterations. 

5.2. Shoulder region 
The governing inviscid equations are hyperbolic in character in the shoulder 
region (see figure l b ) .  Since the boundary-layer equations are parabolic it is 
convenient to permit solutions in the inviscid and viscous regions to develop 
simultaneously without the need for any global iteration. 

The solution a t  the (i + 1)th mesh point (in the 5 direction) is derived from the 
solution up to the ith mesh point in the following manner. 

(1) The inviscid displacement-thickness slope is extrapolated to the (i + 1)th 
mesh point according to 

(2) An inviscid solution is obtained at the (i + 1)th mesh point. 
(3) The inviscid solution provides boundary conditions to permit the 

boundary-layer solution to be integrated to the (i + 1)th mesh point. 
(4) Sf+lI vise and [a8~+1/a~]vi,c are computed. 
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FIGURE 3. Comparison with experiment of (a) heat transfer and (a) pressure distribution. 
M ,  = 7.95, e, = 100, ~ e ,  = 4.2 x 106, T,/T,, = 0.41. - , including displacement- 
thickness effect ; - - - - - , excluding displacement-thickness effect ; 0,  experimental 
data (Tracy 1963); 0, numerical solution (Lubard & Helliwell 1974), M ,  = 8, 
Re, = 3 . 6 ~  105, Tw/To = 0.41. (i) u = 12". (ii) a = 24". 
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(5) The inviscid displacement thickness a t  the (i + 1)th mesh point is replaced 
by 

(6) Step 1 is repeated to extrapolate the solution to the (i + 2)th mesh point, 
etc. 

kH in (5.4) has been chosen empirically. Most of the results presented have been 
obtained with kH = + 1 x A typical variation of displacement-thickness 
slope with g5 is shown in figure 2. The oscillations in [a81/a~],i,c a t  the start 
(9 = 90") are due to the small difference between [a8,/ag],,,, and [a8,/a~lln, on 
the final ray of the windward region. It was found that increasing the number 
of iterations in the windward region reduced the difference and the oscillations 
but did not significantly alter the solution. The range of acceptable values of kH 
was from approximately + 2 x to 10". Too large a value of kH caused the 
early oscillations in [a8,/a&,,, to be communicated to [a8,/aglln, and this 
caused the solution to undergo a divergent oscillation. Too small a value of k, 
caused [a8,/agli,, to fail to follow [a81/ag],i,, and the solutions smoothly diverged. 

The physical effect of not permitting the inviscid-viscous interaction can be 
seen in the circumferential heat transfer and pressure distributions shown in 
figure 3. The results a t  a = 12" represent the lower limit for this method since 
the method requires a reasonable region of supersonic cross-flow. For these 
conditions the cross-flow again becomes subsonic soon after 120". The effect on 
the heat transfer (Qwo is the heat transfer at a = 0") is qualitatively the same at  
both a = 12" and 24". The heat transfer is overpredicted on the windward line 
of symmetry and underpredicted in the leeward region if no account is taken 
of the displacement-thickness effect. A similar pattern is obtained at  a = 50" 
(not shown), although the magnitude of the displacement-thickness correction 
is greater. 

The influence on the pressure distribution is not so striking: both the corrected 
and uncorrected solutions underpredict the experimentally measured pressure 
distribution. It appears that the improvement to the boundary-layer solution 
comes from the change in the circumferential derivative of the inviscid solution 
at  the surface rather than the absolute change in the value of the inviscid 
solution. 

The authors are indebted to one referee of the paper for pointing out the 
possibility (raised by Jones (1968) and Rainbird (1967)) that the difference 
between theoretical and observed values of the pressure on the windward side 
may be due to errors in the experimental results. 

6. Results 
Results are presented here for cone half-angles up to 30" and an incidence 

range of 12"-50". Since the inviscid/viscous interaction has little effect on the 
outer solution, except adjacent to the body, and since inviscid solutions covering 
the same range of conditions (for free-stream Mach numbers up to 16) have been 

37 F L M  74 
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presented previously (Fletcher 1974a), the present data will be concerned with 
the behaviour within the boundary layer. Most emphasis will be placed on what 
happens to the heat transfer, pressure distribution and skin friction at the wall 
since this is the area of greatest practical significance. Besides obtaining solutions 
for various incidences and cone angles the effect of changing the Reynolds 
number and wall temperature has also been examined. 

The inviscid results (Fletcher 1975) indicate there is a small leeward shift of 
the internal shock with increasing Mach number. Since in the reaI flow the 
internal shock produces boundary-layer separation it is to be expected that the 
separation region will contract with increasing Mach number. This result is in 
agreement with the findings of Lin & Rubin (1973). Since the present method 
does not explicitly treat the boundary-layer separation the major effect of 
increasing the free-stream Mach number is to cause an expansion to a slightly 
lower pressure in the leeward region (Fletcher 1974a). Consequently the explicit 
effect on the total flow of varying the free-stream Mach number has not been 
considered. 

Most of the results presented are for moderate and large angles of attack since 
the flow behaviour at small and moderate angles of attack has been described 
previously, e.g. by Lin & Rubin (1973). No attempt has been made to obtain 
solutions adjacent to the leeward Iine of symmetry. All solutions are terminated 
at @ = 150', which has been chosen to lie beyond the separation angles measured 
by Avdueskii & Medvedev (1966). However, it is well known from existing ex- 
perimental studies that the pressure remains constant in the leeward separated 
region and that the heat transfer and skin friction are substantially constant 
except for secondary peaks occurring adjacent to the cross-flow vortices which 
form close to q5 = 180'. 

The data (complete flow solutions up to # = 150') on which this section is 
based have been obtained on a CDC 7600 and have required approximately 
40-60s for each flow condition. The precise execution time depends on the 
number of global iterations required in the windward region. 

6.1. Comparison with experiment 

Only a few experimental studies are available of laminar flow including sub- 
stantial areas of supersonic cross-flow. Among these, Tracy's (1963) provides 
valuable raw data which can be used as a basis for comparison with theoretical 
results. 

Comparisons of heat transfer and pressure distributions for a = 12' and 24' 
are shown in figure 3. Agreement, particularly for the heat transfer, is seen to be 
good once the inviscidlviscous interaction is taken into account. Also shown on 
the curves for a = 12' are the results of Lubard & Helliwell(l974). Their results 
appear to underpredict both the heat transfer and the pressure distribution 
although their test conditions are appropriate to a different Tracy experiment 
from that considered here. 
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FIOIJ-RE 4. Heat-transfer variation with incidence. M ,  = 7, Re, = 5 x 106, TWITo = 0-40. 
(i) 8, = 10". (ii) 8, = 20". (iii) 8, = 30'. 

6.2. Effect of incidence and cone angle 

The influence of these two parameters on the heat transfer, pressure distribution 
and skin friction are shown in figures 4, 5 and 6, respectively. The effect of inci- 
dence on the heat transfer for 8, = 10" is indicated by curves (i) in figure 4. 
The major effect occurs in the windward region: an increase in incidence causes 
a roughly linear increase in heat transfer on the windward line of symmetry. 
It is interesting that the incidence has an almost negligible effect on the heat 
transfer in the leeward region. This essentially follows from the almost uniform 
external (inviscid) conditions and the thick boundary layer in the leeward region. 

The behaviour for 8, = 20" (curves (ii) in figure 4) is similar in character al- 
though the magnitudes of the heat transfer are not so great. The absolute inci- 
dences are the same as those indicated for 6, = lo", but the relative incidences 

are smaller. For 8, = 30" (curves (iii) in figure 4) only three solutions were 
obtained (for a = 35", 40" and 48"). No solution is presented for a = 30" because 
the relative incidence is such that the circumferential extent of the supersonic 
cross-flow region is very small. A solution was obtained at  4 = 50' but for the 
rays on and adjacent to the windward line of symmetry the radial velocity 
component u in the inviscid region wag negative, i.e. directed towards the apex 
of the cone. This would clearly permit communication from the cone base to 

37-2 
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FIGURES 5 (a, b ) .  For legend see next page. 

the cone apex and consequently violate the conical nature of the outer flow. It is 
assumed that, physically, this set of conditions (a = 50°, 8, = 30") would produce 
a detached shock (one referee of the paper notes that this conclusion is in agree- 
ment with the findings of Bachmanova, Lapygin & Lipnitskii 1975). This does 
not seem surprising when it is realized that the angle of attack of the windward 
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FIGTJRE 5. Variation of pressure distribution with incidence. M ,  = 7, Re, =I5 x lo6, 
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FIGURE 6(a). For legend see next page. 
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FIGURE 6. Skin-friction variation with incidence. M ,  = 7, Re, = 6 x 106, TWIT, = 0.40. 
(a) eb = 100. (b )  eb = 200. (c) eb = 300. 

line of symmetry is 80". There is a general tendency for the inviscid radial velocity 
component u to decrease with increasing nose angle, irrespective of the incidence. 
Owing to the small range of relative incidence, the variation in heat transfer 
with angle of attack is very small. 

The pressure distributions shown in figure 5 indicate that, as for the heat 
transfer, most of the variation with incidence occurs on the windward side of 
the cone. In  contrast to the results shown in figure 4, the variation with 0, 
indicates that the pressure distribution is not a function of the relative incidence 
but is a h e a r  function of a + 8 b ,  at least on the windward line of symmetry. It is 
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apparent that the pressure in the leeward region is approximately equal to the 
free-stream value; and this result is independent of both incidence and cone angle. 

The skin-friction variation with incidence is shown in figure 6. Because of the 
large variation of u, with cone angle the skin-friction results are not presented in 
coefficient form. r,, the radial skin-friction component, and T,, the circumferen- 
tial skin-friction component, are defined as 

7, = rP~u/aYlwall, Tu, = Lu aWl~Ylwal1.  

The general behaviour is the same for all the cone angles considered. The radial 
skin friction falls smoothly from the windward line of symmetry to the leeward 
region. The only exception to this is the data set for a = 45" and 0, = 30", 
which has a local maximum at approximately q5 = 85". Qualitatively one can 
consider that the skin friction is determined by two effects. First, ru may be 
expected to increase with q5 since the inviscid radial velocity component u, is 
growing according to U~ = wesine,. Second, ru may be expected to decrease 
with q5 since the boundary-layer thickness is growing with q5. For the conditions 
a = 45", 0, = 30" the inviscid radial velocity component u, is small on the wind- 
ward line of symmetry (this is consistent with the reversal in u, at a = 50", 
8, = 30" as noted above). Thus the rapid growth in u, is sufficient to overcome 
the growth in boundary-layer thickness, at least in the windward region. 

The circumferential skin-friction component r, grows to a maximum at 
approximately q5 = 60" and then falls smoothly towards the leeward region. As 
with the heat transfer and pressure distribution, conditions in the leeward 
region are independent of both incidence and cone angle. The values of rw 
increase approximately linearly with incidence in the windward region. However, 
the behaviour of 7, at 8, = 10" and a = 30", 35" and 40" does not follow this 
dependence on incidence. These three results appear to show very small varis- 
tion with incidence even though the corresponding T~ variation is conventional. 

6.3. Eflect of Reynolds number 

Results are presented for various Reynolds numbers in the range Re, = 5 x lo4 
to 106. The upper limit has been imposed as the approximate limit of laminar 
flow. In  order to ascertain any cross-coupling effect the Reynolds number 
variation has been considered for two different conditions: moderate incidence 
(a = 30", 0, = 20") and large incidence (a = 50°, 0, = 10"). All results have 
been obtained at M, = 7 and TWIT, = 0.40. The variation of the heat transfer, 
circumferential skin friction and displacement thickness are shown in figures 7, 
8 and 9, respectively. The effect of Reynolds number on the pressure distribution 
is small and is not shown. 

The heat-transfer results (figure 7) indicate that the major effect of Reynolds 
number occurs in the windward region close to the windward line of symmetry. 
An increase in Reynolds number causes a small increase in heat transfer owing 
essentially to the reduction in boundary-layer thickness. This is more apparent 
at large incidence. A reversal in the variation with Reynolds number is apparent 
in the leeward region, although the variation is small. 
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FIUURE 7. Heat-transfer variation with Reynolds number. M ,  = 7, TWIT, = @4O.-(i) 
Moderate incidence, a = 30°, 8, = 20". (ii) Large incidence, [a = 50°, 8a = 10". 
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FIGURE 8. Circumferential skin-friction variation with Reynolds number. 
M ,  = 7,  TWITo = 0.40. 
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FIGURE 9. Displacement-thickness variation with Reynolds number. 

M ,  = 7, TWITo = 9-40. 

The circumferential skin-friction coefficient Cfw is defined as Cfw = rw/4peuE. 
The results shown in figure 8 indicate a monotonic increase in Cfw with $. Com- 
paring this result with the variation of 7w shown in figure 6, it  is apparent that the 
continued increase in C,, with 4 in the leeward region is due to the rapid decrease 
in pe. Since u& = wesin&, u is positive for all # considered. An increase in 
Reynolds number causes a fall in Cfw; the effect is greater at the larger incidence. 
The variation of C,, with Reynolds number is qualitatively the same but the 
changes are smaller. 

In order to collapse the results for the displacement-thickness variation with 
Reynolds number the similarity parameter Re! has been introduced into figure 9. 
In the windward region the results for all Reynolds numbers collapse onto a 
single curve a t  a given incidence or cone angle. In  contrast, the similar behaviour 
breaks down in the leeward region, where the results tend to group themselves 
according to Reynolds number irrespective of incidence or cone angle. 

@. 

6.4. Effect of surface temperature 

A range of surface temperature ratios TWITo from 0.1 to 0.9 has been considered. 
As in Q 6.3, the effect of moderate (a = 30", 8, = 20") and large (a = 50", 6, = 10") 
incidence has been obtained. All results presented in this section have been 
obtained at Ma = 7 and Re, = 5 x  lo5. No attempt has been made to obtain 
solutions corresponding to an adiabatic wall; this could be done but would re- 
quire a different treatment of the wall boundary condition on s (see $4.2). The 
results for a hot wall, TWITo = 0.9 (see figure lo), approximate this case. 
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FIGURE. 10. Heat-transfer variation with wall temperature ratio. M ,  = 7, Re, = 6 x lo5. 
(a) Moderate incidence, a = 30°, Ob = 20'. ( b )  Large incidence, a = 60°, 8, = 10'. 

TWITo = 0.9. 
, TWITo= 0.1; - *  - *  - .  , Tw1To=O-4; . * . . * ,  Tw/T,,=0.6; -----, 
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FIQWRE 11. Circumferential skin-friction variation with wall temperature ratio. M ,  = 7, 
Re, = 5 x 106. (i) Moderate incidence, a = 30", 8, = 20". (ii) Large incidence, a = 50", 

, TWIT - 0.1; - * - * -, T,,,/TO = 0.4, ---- -, TWIT, = 0.9. 0 -  ea = 100. - 

The results for the heat transfer (figure 10) are not expressed as a ratio to the 
corresponding zero-incidence results Qzoo because for TWITo = 0.9, Qm changes 
sign at an intermediate q5 and this would cause a spurious effect. The results 
shown in figure 10 demonstrate a general trend of reducing heat transfer as the 
wall temperature ratio increases. This effect is greater for the larger incidence 
and, as with all the other variables considered so far, is essentially confined to 
the windward region. The variation of heat transfer with temperature ratio in 
the leeward region is very small. 

The variation of the circumferential skin-friction coefficient C,w with q5 is 
illustrated in figure 11. The effect of increasing the wall temperature ratio causes 
an increase in C,, for all q5 and for both moderate and large incidence. The effect 
is magnified at large incidence. The cold-wall results (T,ITo = 0.1) indicate that 
C, is approaching a limit as q5 increases in the leeward region, whereas increasing 
the wall temperature produces a continuing growth of C,, with q5. 

I The effect of wall temperature on the temperature distribution within the 
boundary layer is shown in figure 12. The results for the larger incidence (figure 
12b) were obtained a t  q5 = 82.5'. The results are qualitatively independent of 
incidence and all the results (with the exception of the hot-wall case, Tw/To = 0.9) 
show an increase in temperature as a traverse is made from the wall to the 
inviscid region. A rapid adjustment takes place close to the wall, followed by a 
more gradual adjustment to the inviscid conditions as the outer edge of the 
boundary layer is approached. 
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FIQTJRE 12. Temperature variation with wall temperature ratio. M ,  = 7, Re, = 5 x 106. 
(a) Moderate incidence, a = 30°, = 20'. ( b )  Large incidence, a: = 60°, $6 = 10". 
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FIQURE 13. Circumferential velocity variation with wall temperature ratio. M ,  = 7, 
Re, = 5 x lo5. (a) Moderate incidence, a = 30", 8, = 20". (b )  Large incidence, 
U = 50°, B b  = loo. - , TWIT, = 0.1; ----- , TWITo = 0.9. 
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FIGURE 14. Boundary-layer profiles. M ,  = 7, a = 60°, Oa = lo", Re, = 6 x lo6, TWITo = 
0.4. (a) Radial velocity component. (b )  Circumferential velocity component. (c) 
Temperature. 

The corresponding variation in the circumferential velocity component is 
shown in figure 13. Only results corresponding to the extreme temperature 
ratios are shown. The case of a nearly adiabatic wall (TWIT, = 0.9) produces an 
interesting local maximum within the boundary layer. The results for moderate 
and large incidence are qualitatively the same. 

6.5. Velocity and temperature proJiles 
For a large angle of attack (a = 50°, 0, = 10') the variation of the velocity and 
temperature profiles with circumferential location are presented in figure 14. 
In  order to reduce the spread of the results the normal co-ordinate has been 
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scaled by the local displacement thickness. Comparison of figures 14(a) and 9 
indicates that a plot of y (rad) vs. u/u, would cause the results in figure 14 (a) to 
occur in reverse order. 

The variation of the axial velocity component u with 4 is not very great, as 
indicated by figure 14(a). There is a general steepening of the profile as 4 in- 
creases. The w profiles (figure 14b) demonstrate a tendency to develop a local 
maximum as 4 increases. This effect is also apparent in the moderate incidence 
results of Dwyer (1971) and Lin & Rubin (1973). Comparing figure 14(a) with 
figure 13, i t  is apparent that increasing the wall temperature causes the local 
maximum in w to appear at smaller 4. 

The temperature variation with increasing 4 is shown in figure 14(c). Even at 
the largest q5 (138"), where the inviscid temperature is less than the wall tempera- 
ture, there is still a net flow of heat to the wall. The local minimum in temperature 
at an intermediate point in the boundary layer (at 4 = 138") is associated with 
the local maximum in the circumferential velocity component (figure lab). 

7. Conclusion 
The present results extend previous investigations (e.g. Lin & Rubin 1973) 

to larger incidences (up to 50") and cone angles (up to 30") and show the syste- 
matic variation with Reynolds number and wall temperature ratio. By con- 
sidering the effect of these parameters on the conditions af the body surface, 
i.e. the heat transfer, pressure distribution and skin friction, the following con- 
clusions may be drawn. 

(i) The behaviour at large incidence and cone angle is qualitatively the same 
as that a t  moderate incidence and small cone angle. 

(ii) Variations in surface conditions caused by varying the above parameters 
are confined to the windward region. 

(iii) Once the inviscid cross-flow is supersonic conditions a t  the surface in 
the leeward region are virtually independent of any of the parameter changes 
considered above. This situation is not expected to be greatly altered in the lee- 
ward separated region. 

(iv) The result of permitting the displacement-thickness effect to modify the 
outer inviscid solution causes a small, but significant change in conditions at 
the surface, particularly the heat transfer. 

(v) The present technique can in principle be extended to the far windward 
region provided numerical integration of the right sides of (2.20)-(2.22) is re- 
placed by an algebraic calculation, outlined in 94.3. 
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